Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Adv ; 8(8): eabi6110, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1714330

ABSTRACT

The spread of SARS-CoV-2 and ongoing COVID-19 pandemic underscores the need for new treatments. Here we report that cannabidiol (CBD) inhibits infection of SARS-CoV-2 in cells and mice. CBD and its metabolite 7-OH-CBD, but not THC or other congeneric cannabinoids tested, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after viral entry, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the host IRE1α RNase endoplasmic reticulum (ER) stress response and interferon signaling pathways. In matched groups of human patients from the National COVID Cohort Collaborative, CBD (100 mg/ml oral solution per medical records) had a significant negative association with positive SARS-CoV-2 tests. This study highlights CBD as a potential preventative agent for early-stage SARS-CoV-2 infection and merits future clinical trials. We caution against use of non-medical formulations including edibles, inhalants or topicals as a preventative or treatment therapy at the present time.


Subject(s)
Antiviral Agents/pharmacology , Cannabidiol/pharmacology , Host-Pathogen Interactions/drug effects , Immunity, Innate/drug effects , SARS-CoV-2/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , COVID-19/virology , Cannabidiol/chemistry , Cannabidiol/metabolism , Chlorocebus aethiops , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/genetics , Endoribonucleases/metabolism , Epithelial Cells/virology , Female , Gene Expression Regulation, Viral/drug effects , Host-Pathogen Interactions/physiology , Humans , Interferons/metabolism , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
2.
Planta Med ; 88(12): 1047-1059, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1462051

ABSTRACT

THC, CBD, and CBN were reported as promising candidates against SARS-CoV2 infection, but the mechanism of action of these three cannabinoids is not understood. This study aims to determine the mechanism of action of THC, CBD, and CBN by selecting two essential targets that directly affect the coronavirus infections as viral main proteases and human angiotensin-converting enzyme2. Tested THC and CBD presented a dual-action action against both selected targets. Only CBD acted as a potent viral main protease inhibitor at the IC50 value of 1.86 ± 0.04 µM and exhibited only moderate activity against human angiotensin-converting enzyme2 at the IC50 value of 14.65 ± 0.47 µM. THC acted as a moderate inhibitor against both viral main protease and human angiotensin-converting enzymes2 at the IC50 value of 16.23 ± 1.71 µM and 11.47 ± 3.60 µM, respectively. Here, we discuss cannabinoid-associated antiviral activity mechanisms based on in silico docking studies and in vitro receptor binding studies.


Subject(s)
COVID-19 Drug Treatment , Cannabidiol , Cannabinoids , Angiotensin-Converting Enzyme 2 , Angiotensins , Antiviral Agents/pharmacology , Cannabidiol/metabolism , Cannabinoids/metabolism , Cannabinol/metabolism , Cannabinol/pharmacology , Defense Mechanisms , Dronabinol/metabolism , Dronabinol/pharmacology , Humans , Peptide Hydrolases , Protease Inhibitors/pharmacology , RNA, Viral , SARS-CoV-2
3.
Molecules ; 26(9)2021 Apr 23.
Article in English | MEDLINE | ID: covidwho-1238919

ABSTRACT

The CB1 cannabinoid receptor (CB1R) contains one of the longest N termini among class A G protein-coupled receptors. Mutagenesis studies suggest that the allosteric binding site of cannabidiol (CBD) involves residues from the N terminal domain. In order to study the allosteric binding of CBD to CB1R we modeled the whole N-terminus of this receptor using the replica exchange molecular dynamics with solute tempering (REST2) approach. Then, the obtained structures of CB1R with the N terminus were used for ligand docking. A natural cannabinoid receptor agonist, Δ9-THC, was docked to the orthosteric site and a negative allosteric modulator, CBD, to the allosteric site positioned between extracellular ends of helices TM1 and TM2. The molecular dynamics simulations were then performed for CB1R with ligands: (i) CBD together with THC, and (ii) THC-only. Analyses of the differences in the residue-residue interaction patterns between those two cases allowed us to elucidate the allosteric network responsible for the modulation of the CB1R by CBD. In addition, we identified the changes in the orthosteric binding mode of Δ9-THC, as well as the changes in its binding energy, caused by the CBD allosteric binding. We have also found that the presence of a complete N-terminal domain is essential for a stable binding of CBD in the allosteric site of CB1R as well as for the allosteric-orthosteric coupling mechanism.


Subject(s)
Cannabidiol/metabolism , Receptor, Cannabinoid, CB1/metabolism , Allosteric Regulation/physiology , Allosteric Site , Animals , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Secondary , Receptor, Cannabinoid, CB1/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL